These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of hydrolysis conditions on the morphology of cellulose II nanocrystals (CNC-II) derived from mercerized microcrystalline cellulose. Author: Li J, Wang Z, Wang P, Tian J, Liu T, Guo J, Zhu W, Khan MR, Xiao H, Song J. Journal: Int J Biol Macromol; 2024 Feb; 258(Pt 2):128936. PubMed ID: 38143058. Abstract: The properties of cellulose nanocrystals with allomorph II (CNC-II) vary with the sources and the treatments received. In this work, the influences of hydrolysis time, temperature, and the applied acid concentration on the crystal size of CNC-II were investigated by the surface response experimental design. The results showed that temperature was the most significant factor affecting the crystal size of CNC-II during hydrolysis from mercerized cellulose. Then the morphology and colloidal properties of CNC-II were revealed by dynamic laser scattering (DLS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), etc. XRD results indicated that CNC-II had slightly lower crystallinity (80.89 % vs 82.7 %) and larger crystallite size (5.21 vs. 5.13 nm) than CNC-I. TEM and AFM results showed that the morphology of CNC-II were disc-like and rod-like particles, with an average diameter of 14.6 ± 4.7 nm (TEM) and a thickness of 4- 8 nm (AFM). TG and XPS revealed the reduced thermal stability was due to the introduced sulfate groups in CNC-II during hydrolysis. This investigation has addressed the features of CNC-II derived from mercerized cellulose, and it would be promising in fabricating advanced materials.[Abstract] [Full Text] [Related] [New Search]