These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid scanning method for SICM based on autoencoder network. Author: Wu W, Liao X, Wang L, Chen S, Zhuang J, Zheng Q. Journal: Micron; 2024 Feb; 177():103579. PubMed ID: 38154409. Abstract: Scanning Ion Conductance Microscopy (SICM) enables non-destructive imaging of living cells, which makes it highly valuable in life sciences, medicine, pharmacology, and many other fields. However, because of the uncertainty retrace height of SICM hopping mode, the time resolution of SICM is relatively low, which makes the device fail to meet the demands of dynamic scanning. To address above issues, we propose a fast-scanning method for SICM based on an autoencoder network. Firstly, we cut under-sampled images into small image lists. Secondly, we feed them into a self-constructed primitive-autoencoder super-resolution network to compute high-resolution images. Finally, the inferred scanning path is determined using the computed images to reconstruct the real high-resolution scanning path. The results demonstrate that the proposed network can reconstruct higher-resolution images in various super-resolution tasks of low-resolution scanned images. Compared to existing traditional interpolation methods, the average peak signal-to-noise ratio improvement is greater than 7.5823 dB, and the average structural similarity index improvement is greater than 0.2372. At the same time, using the proposed method for high-resolution image scanning leads to a 156.25% speed improvement compared to traditional methods. It opens up possibilities for achieving high-time resolution imaging of dynamic samples in SICM and further promotes the widespread application of SICM in the future.[Abstract] [Full Text] [Related] [New Search]