These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transformation of corncob into high-value xylooligosaccharides using glycoside hydrolase families 10 and 11 xylanases from Trichoderma asperellum ND-1.
    Author: Zheng F, Chen J, Wang J, Zhuang H.
    Journal: Bioresour Technol; 2024 Feb; 394():130249. PubMed ID: 38154735.
    Abstract:
    Effective production of xylooligosaccharides (XOS) with lower proportion of xylose entails unique and robust xylanases. In this study, two novel xylanases from Trichoderma asperellum ND-1 belonging to glycoside hydrolase families 10 (XynTR10) and 11 (XynTR11) were over-expressed in Komagataella phaffii X-33 and characterized to be robust enzymes with high halotolerance and ethanol tolerant. Both enzymes displayed strict substrate specificity towards beechwood xylan and wheat arabinoxylan. (Glu153/Glu258) and (Glu161/Glu252) were key catalytic sites for XynTR10 and XynTR11. Notably, XynTR11 could rapidly degrade xylan/XOS into xylobiose without xylose via transglycosylation. Direct degradation of corncob using XynTR10 and XynTR111 displayed that while XynTR10 yielded 77% xylobiose and 25% xylose, XynTR11 yielded much less xylose (11%) and comparable amounts of xylobiose (63%). XynTR10 or XynTR111 has great potential as a catalyst for bioconversion of xylan-containing agricultural waste into high-value products (biofuel or XOS), which is of significant benefit for the economy and environment.
    [Abstract] [Full Text] [Related] [New Search]