These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational and experimental assessment of efficient dye adsorption method from aqueous effluents by halloysite and palygorskite clay minerals.
    Author: Câmara ABF, Silva MRL, de Longe C, Moura HOMA, Silva SRB, de Souza MAF, Rodríguez-Castellón E, de Carvalho LS.
    Journal: Environ Sci Pollut Res Int; 2024 Sep; 31(41):53671-53690. PubMed ID: 38158527.
    Abstract:
    The removal of dyes from effluents of textile industries represents a technological challenge, due to their significant environmental impact. The application of halloysite (Hal) and palygorskite (Pal) clay minerals as adsorbents for the removal of Congo red (CR) and methylene blue (MB) was evaluated in this work. The materials were applied both in natural and acid-treated forms, and characterized by XRD, XPS, SEM-EDS, FTIR, and N2 adsorption-desorption isotherm techniques to identify their properties and main active sites. The adsorbents showed potential to remove CR (> 98%) and MB (> 85%) within 180 min, using 0.3 g adsorbent and initial dye concentration of 250 mg L-1. Semi-empirical quantum mechanical calculations (SQM) confirmed the interaction mechanism between dyes and the adsorbents via chemisorption (- 69.0 kcal mol-1 < Eads <  - 28.8 kcal mol-1), which was further observed experimentally due to the high fit of adsorption data to pseudo-second order kinetic model (R2 > 0.99) and Langmuir isotherm (R2 > 0.98). The use of Pal and Hal to remove dyes was proven to be economically and environmentally viable for industrial application.
    [Abstract] [Full Text] [Related] [New Search]