These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: LncRNA PSMA3-AS1 promotes preterm delivery by inducing ferroptosis via miR-224-3p/Nrf2 axis.
    Author: Qiu L, Lin X, Chen R, Wu Y, Yan J.
    Journal: Cell Mol Biol (Noisy-le-grand); 2023 Dec 10; 69(13):270-278. PubMed ID: 38158666.
    Abstract:
    Long non-coding RNAs (lncRNAs) have a vital potential in premature delivery. This research was intended to explore PSMA3-AS1's role in premature delivery as well as its possible molecular mechanism. We enrolled 100 premature delivery patients and 100 term patients. Fetal membranes were collected. RT-qPCR was adopted for evaluating PSMA3-AS1, miRNA-224-3p, along with Nrf2 expression. Cell function experiments were implemented to clarify PSMA3-AS1 functions in human trophoblast HTR-8/SVneo cells. Rescue together with mechanistic experiments were implemented for assessing the regulatory function and interaction between miR-224-3p and PSMA3-AS1 or Nrf2 axis in human trophoblast cells. The results uncovered that PSMA3-AS1 level presented downregulation in the fetal membrane tissues and human trophoblast cells. Overexpressed PSMA3-AS1 enhanced cell proliferation but suppressed ferroptosis in human trophoblast cells. Besides, PSMA3-AS1 elevation also attenuated the LPS-induced inflammatory response and restored the LPS-induced upregulation of 20α-HSD and downregulation of progesterone (P4). Mechanistically, miR-224-3p could bind to PSMA3-AS1 and present upregulation in fetal membranes and human trophoblast cells. Notably, overexpressed miR-224-3p offset the influences of PSMA3-AS1 on human trophoblast cell proliferation and ferroptosis. Furthermore, Nrf2 was targeted by miR-224-3p. Downregulated Nrf2 offset the influences of the miR-224-3p inhibitor and induced HTR-8/SVneo dysfunction. Additionally, Nrf2 transcriptionally activated PSMA3-AS1 and GPX4. In conclusion, PSMA3-AS1 expression is low during premature delivery and overexpressing PSMA3-AS1 promotes proliferation and suppresses ferroptosis of human trophoblast cells by interacting with miR-224-3p to downregulate Nrf2. Therefore, enhancing PSMA3-AS1 expression may be a promising therapeutic strategy to prevent premature delivery.
    [Abstract] [Full Text] [Related] [New Search]