These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fate, behaviour and microbial response of diluted bitumen and conventional crude spills in a simulated warm freshwater environment.
    Author: Xin Q, Saborimanesh N, Ridenour C, Farooqi H.
    Journal: Environ Pollut; 2024 Feb 15; 343():123224. PubMed ID: 38159633.
    Abstract:
    Diluted bitumen (DB), one of the most transported unconventional crude oils in Canada's pipelines, raises public concerns due to its potential spillage into freshwater environments. This study aimed to compare the fate and behaviour of DB versus conventional crude (CC) in a simulated warm freshwater environment. An equivalent of 10 L of either DB or CC was spilled into 1200 L of North Saskatchewan River (NSR) water containing natural NSR sediment (2.4 kg) in a mesoscale spill tank and its fate and behaviour at air/water temperatures of 18 °C/24 °C were monitored for 56 days. Oil mass distribution analysis showed that 42.3 wt % of CC and 63.6 wt% of DB resided in the oil slicks at the end of 56-day tests, consisting mainly high molecular weight (HMW) compounds (i.e., resins and asphaltenes). The lost oil contained mainly low molecular weight (LMW) compounds (i.e., light saturates and some aromatics) into the atmosphere, water column, and sediment through collective weathering processes. Notably, weathered CC emulsified with water and remained floating until the end, while the weathered DB mat started to lose its buoyancy after 24 days under quiescent conditions and resurfaced once waves were applied. Analysis of the microbial communities of water pre- and post-spills revealed the replacement of indigenous microbial communities with hydrocarbon-degrading species. Exposure to CC reduced the microbial diversity by 12%, while exposure to DB increased the diversity by 10%. During the early stages of the spill (up to Day 21), most dominant species were positively correlated with the benzene, toluene, ethylbenzene, and xylenes (BTEX) content or polycyclic aromatic hydrocarbon (PAH) content of the water column, while the dominant species at the later stages (Days 21-56) of the spill were negatively correlated with BTEX or PAH content and positively correlated with the total organic carbon (TOC) content in waters.
    [Abstract] [Full Text] [Related] [New Search]