These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of anodal tDCS on resting state eeg power and motor function in acute stroke: a randomized controlled trial. Author: Vimolratana O, Aneksan B, Siripornpanich V, Hiengkaew V, Prathum T, Jeungprasopsuk W, Khaokhiew T, Vachalathiti R, Klomjai W. Journal: J Neuroeng Rehabil; 2024 Jan 03; 21(1):6. PubMed ID: 38172973. Abstract: BACKGROUND: Anodal transcranial direct current stimulation (tDCS) is a beneficial adjunctive tool in stroke rehabilitation. However, only a few studies have investigated its effects on acute stroke and recruited only individuals with mild motor deficits. This study investigated the effect of five consecutive sessions of anodal tDCS and conventional physical therapy on brain activity and motor outcomes in individuals with acute stroke, with low and high motor impairments. METHODS: Thirty participants were recruited and randomly allocated to either the anodal or sham tDCS group. Five consecutive sessions of tDCS (1.5 mA anodal or sham tDCS for 20 min) were administered, followed by conventional physical therapy. Electroencephalography (EEG), Fugl-Meyer Motor Assessment (FMA), and Wolf Motor Function Test (WMFT) were performed at pre-, post-intervention (day 5), and 1-month follow-up. Sub-analyses were performed on participants with low and high motor impairments. The relationship between EEG power and changes in motor functions was assessed. RESULTS: Linear regression showed a significant positive correlation between beta bands and the FMA score in the anodal group. Elevated high frequency bands (alpha and beta) were observed at post-intervention and follow-up in all areas of both hemispheres in the anodal group, while only in the posterior area of the non-lesioned hemisphere in the sham group; however, such elevation induced by tDCS was not greater than sham. Lower limb function assessed by FMA was improved in the anodal group compared with the sham group at post-intervention and follow-up only in those with low motor impairment. For the upper limb outcomes, no difference between groups was found. CONCLUSIONS: Five consecutive days of anodal tDCS and physical therapy in acute stroke did not result in a superior improvement of beta bands that commonly related to stroke recovery over sham, but improved lower extremity functions with a post-effect at 1-month follow-up in low motor impairment participants. The increase of beta bands in the lesioned brain in the anodal group was associated with improvement in lower limb function. TRIAL REGISTRATION: NCT04578080, date of first registration 10/01/2020.[Abstract] [Full Text] [Related] [New Search]