These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Catalytic pyrolysis of liquor-industry waste: Product and mechanism analysis. Author: Zhao Y, Li X, Zhu Y, Li Y, Nan J, Li J, Xu G. Journal: Bioresour Technol; 2024 Feb; 394():130293. PubMed ID: 38184088. Abstract: The effects of three catalysts, namely Ni/γ-Al2O3, Fe/γ-Al2O3, and Mg/γ-Al2O3, on the three-phase products of liquor-industry waste pyrolysis were investigated in this study. Results indicated that the catalytic performance of Ni/γ-Al2O3 outperformed those of Fe/γ-Al2O3 and Mg/γ-Al2O3 significantly. The application of Ni/γ-Al2O3 facilitated the reformation of pyrolysis volatiles, leading to increased yields of H2 (174.1 mL/g), CH4 (80.7 mL/g), and CO (88.2 mL/g) by 980.00 %, 133.24 %, and 83.37 %, respectively. compared to catalyst-free conditions. The Ni/γ-Al2O3 also increased the low-level calorific value of biogas by 109.3 % compared to that under non-catalyst conditions. Moreover, Ni/γ-Al2O3 enhanced the relative concentrations of hydrocarbons in tar by 23.15 % while reducing the relative concentrations of O-species by 15.73 % compared to catalyst-free conditions through induced deoxygenation, decarboxylation, decarbonylation reactions as well as efficient steam reforming processes for tar and syngas upgrading purposes. Thus, incorporating Ni/γ-Al2O3 into the pyrolysis process represents a renewable approach for waste-to-energy conversion.[Abstract] [Full Text] [Related] [New Search]