These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Decidual stromal cells-derived exosomes incurred insufficient migration and invasion of trophoblast by disturbing of β-TrCP-mediated snail ubiquitination and degradation in unexplained recurrent spontaneous abortion. Author: Xiong M, Wang Q, Zhang X, Wen L, Zhao A. Journal: Eur J Med Res; 2024 Jan 09; 29(1):39. PubMed ID: 38195659. Abstract: BACKGROUND: Exosomes released from decidual stromal cells (DSC-exos) play a crucial role in facilitating the epithelial-mesenchymal transition (EMT) of trophoblasts and insufficient trophoblasts EMT are associated with URSA (unexplained recurrent spontaneous abortion). However, the mechanisms underlying DSC-exos inducing EMT is not completely understood. METHODS: DSC-exos of normal pregnant women (N-DSC-exos) and URSA patients (URSA-DSC-exos) were extracted and characterized. Characterization of the isolated DSC-exos was performed using with TEM (transmission electron microscopy), NTA (nanoparticle tracking analysis), and WB (western blot) techniques. Subsequently, these DSC-exos were co-cultured with trophoblasts cell lines (HTR-8/SVneo). The influence of both N-DSC-exos and URSA-DSC-exos on trophoblasts proliferation, invasion and migration, as well as on the expression of EMT-related proteins, was evaluated through a series of assays including CCK8 assays, wound healing assays, transwell assays, and western blot, respectively. Then rescue experiments were performed by β-TrCP knockdown or β-TrCP overexpressing trophoblasts with snail-siRNA transfection or β-TrCP overexpressing Lentivirus infection, respectively. Finally, animal experiments were employed to explore the effect of N-DSC-exos on embryo absorption in mice. RESULTS: We found increased β-TrCP expression in the villus of URSA patients when compared to the normal pregnant women, alongside reduction in the levels of both snail and N-cadherin within URSA patients. N-DSC-exos can promote the EMT of the trophoblast by inhibiting β-TrCP-mediated ubiquitination and degradation of transcription factor snail. Moreover the capacity to promote EMT was found to be more potent in N-DSC-exos than URSA-DSC-exos. Down-regulation of snail or overexpression of β-TrCP can reverse the effects of N-DSC-exos on trophoblast. Finally, in vivo experiment suggested that N-DSC-exos significantly reduced the embryo resorption rate of spontaneous abortion mouse model. CONCLUSIONS: Our findings indicate that URSA-DSC-exos caused insufficient migration and invasion of trophoblast because of disturbing of β-TrCP-mediated ubiquitination and degradation of EMT transcription factor snail. Elucidating the underlying mechanism of this dysregulation may shed light on the novel pathways through which DSC-exos influence trophoblast function, thereby contributing to our understanding of their role in URSA.[Abstract] [Full Text] [Related] [New Search]