These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Research progress of stationary phase of gas chromatography based on chiral organic frameworks]. Author: Zhou S, Kuang Y, Zheng J, Ouyang G. Journal: Se Pu; 2024 Jan 08; 42(1):1-12. PubMed ID: 38197202. Abstract: Enantiomers typically show different pharmacological, toxicological, and physiological properties. Thus, the preparation of enantiopure compounds is of great significance for human health and sustainable development. Compared with asymmetric catalysis, enantiomeric separation is simpler, faster, and more efficient; as such, it has become the preferred method for obtaining pure enantiomers. At present, enantiomeric separation methods mainly include chromatography, nanochannel membrane separation, selective adsorption, and recrystallization. In particular, gas chromatography (GC) plays an important role in enantioseparation because of its high sensitivity, excellent reproducibility, and outstanding processing capacity for various enantiomers. The stationary phase is key to the separation efficiency of GC, and more efficient, stable, and cost-effective materials that could serve as stationary phases are constantly being explored. Organic frameworks, such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs), porous organic cages (POCs), metal-organic cages (MOCs), and hydrogen-bonded organic frameworks (HOFs), possess large specific surface areas, high porosities, tunable pore sizes, and easy functionalization, rendering them promising candidates for the separation of mixed analytes. Research has shown that the use of organic frameworks as stationary phases for GC results in excellent column efficiency and high resolution for various analytes, including n-alkanes, n-alcohols, polycyclic aromatic hydrocarbons, positional isomers, and organic fluorides. Furthermore, organic frameworks can be prepared as chiral stationary phases for GC by the intelligent introduction of a chiral moiety, thereby enabling the efficient separation of enantiomers. Synthetic strategies for chiral organic frameworks are primarily categorized as post-synthesis or bottom-up approaches. In general, the post-synthesis strategy can introduce various chiral sites to the framework; however, the distribution of chiral sites may not be uniform, and the ordered framework may be destroyed during the post-synthesis process. The bottom-up strategy allows for the uniform and precise distribution of chiral sites in the framework, but the synthesis of chiral monomers and the constraint between asymmetry and crystallinity limit its development. Chiral induction has been proposed as an alternative strategy for synthesizing chiral organic frameworks. The use of this strategy has led to the successful preparation of organic frameworks with abundant chiral sites and excellent crystallinity. Dynamic coating and in situ growth are the main approaches used to transform the as-prepared chiral organic frameworks into stationary phases. Notably, the in situ growth approach can yield chiral COF/MOF-coated capillary columns that provide high resolution for the separation of enantiomers with excellent repeatability and reproducibility. Nevertheless, owing to the slightly complex pretreatment process and the difficulty of synthesizing chiral organic frameworks, the in situ growth approach has not yet been widely applied. Owing to their excellent solvent processing performance, POCs, MOCs, and HOFs can be easily coated on the inner walls of columns to form membranes via dynamic or static coating. A series of enantiomers have been successfully separated and analyzed by immobilizing chiral COFs, MOFs, POCs, MOCs, and HOFs on GC capillary columns, demonstrating the great potential of chiral organic frameworks for enantiomeric separation. In general, the mechanisms by which chiral organic frameworks recognize enantiomers could be mainly categorized as van der Waals interactions, hydrogen bonding, π-π interactions, and size-exclusion effects. While molecular simulations can offer some insights into these recognition mechanisms, clarifying these mechanisms based on effective characterization remains challenging. In summary, organic frameworks show outstanding advantages for enantiomer separation. Given breakthroughs in synthetic strategies for chiral organic frameworks and the in-depth study of chiral recognition mechanisms, chiral organic frameworks may be expected to become an important aspect in the field of chiral materials, further realizing the large-scale analysis and production of chiral analytes. A total of 64 references, most of which are from the American Chemical Society, Springer Nature, Wiley Online Library, and Elsevier databases, are cited in this review. 对映异构体通常具有不同的药理学、毒理学和生理学性质,获得单一手性化合物对人类健康和环境的可持续发展均具有重要意义。目前,色谱是分离对映异构体的主要方式之一,色谱分离的关键在于固定相的选择。有机框架材料作为一类新兴的结晶多孔材料,具有结构高度有序、孔隙丰富、孔结构和尺寸可调及易于功能化等优点,在对映异构体的色谱分离方面受到广泛关注。通过后修饰或自下而上的合成策略,一系列具有高结晶度和丰富手性识别位点的有机框架材料已经被成功研制。基于动态涂覆或原位生长等方法,手性有机框架材料可被成功固定于气相色谱柱的内表面,从而实现多种对映异构体混合物的高分辨分离;与商用手性色谱柱相比,部分自制的手性有机框架材料色谱柱具有更优异的选择因子和分离度。本文首先介绍了有机框架材料在分离领域所展现出的优势,之后分别论述了手性有机框架材料的合成方式、相应色谱固定相的制备方法及手性有机框架材料对对映异构体的分离性能,最后总结了手性有机框架材料在未来手性材料领域的突出优势和面临的挑战。[Abstract] [Full Text] [Related] [New Search]