These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synergistic mechanisms between chlorine-mediated electrochemical advanced oxidation and ultraviolet light for ammonia removal.
    Author: Li Q, Liu GH, Du H, Xian G, Qi L, Wang H.
    Journal: J Environ Manage; 2024 Feb 14; 352():120057. PubMed ID: 38198839.
    Abstract:
    The combination of chlorine-mediated electrochemical advanced oxidation (Cl-EAO) and ultraviolet (UV) radiation (UV-E/Cl) can efficiently remove ammonia from wastewater. However, the synergistic mechanisms between Cl-EAO and UV need to be explored in more detail. Thus, in this study, the ammonia oxidation performance of Cl-EAO and UV-E/Cl systems were compared, while the synergistic mechanisms were identified by the performance of UV/chlorine oxidation (UV-ClO) system and the results of electron paramagnetic resonance (EPR) analysis, free radical inhibition assays, and determination of steady-state concentration of free radicals. It was found that, compared with the Cl-EAO system, UV increased the ammonia removal rate by 42.85% and reduced the active chlorine concentration (56.64%) and nitrate yield (53.61%). In the Cl-EAO, and UV-E/Cl systems, Cl were detected, and the free radical inhibition assays and determination of steady-state concentration of free radicals suggested that UV increased the concentration of Cl by 51.47%, resulting in Cl becoming the major contributor to ammonia oxidation in the UV-E/Cl system. Besides, UV also increase the concentrations of HO and Cl2•-, which further promoted the organic matter removal in the real domestic wastewater. This study also discussed the ammonia oxidation performance of the UV-E/Cl system in real domestic wastewater, even with the presence of significant levels of organic and inorganic anions in the wastewater, UV increased the ammonia oxidation by 21.95%. The results of this study thus clarify the mechanisms and potential applications of UV-E/Cl technology.
    [Abstract] [Full Text] [Related] [New Search]