These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coupling Z-Scheme g-C3N4/rGO/MoS2 Ternary Heterojunction as an Efficient Visible Light Photocatalyst for Hydrogen Evolution and RhB Degradation.
    Author: Wu B, Wang C, Wang Z, Shen K, Wang K, Li G.
    Journal: Langmuir; 2024 Jan 23; 40(3):1931-1940. PubMed ID: 38214273.
    Abstract:
    Coupling heterostructures to synergistically improve the light adsorption and promote the charge carrier separation has been regarded as an operative approach to advance the photocatalytic performances. However, it is still challenging to construct heterostructures with appropriate optical properties and interfacial energy structures at the same time. In this work, a Z-scheme g-C3N4/rGO/MoS2 ternary composite photocatalyst is successfully synthesized via an effective hydrothermal method. The as-synthesized g-C3N4/rGO/MoS2 composite photocatalyst exhibited significant improvement for visible light absorption and boosted the separation efficiency of photoinduced electron-hole pairs. The g-C3N4/rGO/MoS2 system exhibited optimum visible-light-induced photocatalytic activity in hydrogen (H2) from water splitting and degrading pollutant rhodamin B (RhB), which is 22 times and 5 times higher than that of pure g-C3N4, respectively. The excellent photocatalytic activities are attributed to the synergetic effects of coupling rGO, g-C3N4, and MoS2 ternary structures to the composite photocatalyst. These combinations of intimate two-dimensional nanoconjugations can effectively inhibit charge recombination and accelerate charge transfer kinetics, forming a Z-scheme-assisted photocatalytic mechanism, thereby exhibiting superior photocatalytic activity.
    [Abstract] [Full Text] [Related] [New Search]