These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Domain-limited thermal transformation preparation of novel graphitized carbon-supported layered double oxides for efficient tetracycline degradation. Author: Wu S, Liang H, Sun K, Li Z, Hu M, Wang L, Yang L, Han Q, Zhang Q, Lang J. Journal: J Environ Manage; 2024 Feb 14; 352():120040. PubMed ID: 38215597. Abstract: The resource utilization of industrial lignin to construct high-performance catalysts for wastewater treatment field is pioneering research. Herein, the novel graphitized carbon-supported CuCoAl-layered double oxides (LDOs-GC) were successfully designed by the domain-limited thermal transformation technology using sodium lignosulfonate (LS) self-assembled CuCoAl-layered double hydroxides as the precursor. The optimized LDOs-GC catalyst owned the excellent tetracycline (TC) degradation of 98.0% within 15 min by activated peroxymonosulfate (PMS) under optimal conditions (20 mg/L catalyst, 1.5 mM PMS, 30 mg/L TC). The density of metal ions in the catalyst and the synergistic interaction between graphitized carbon (GC) and metal ions played a major role in TC degradation. Based on a comprehensive analysis, the TC degradation in LDOs-GC/PMS system was proved to be accomplished by a combination of free radicals (SO4·- and HO·) and non-radicals (1O2). Meanwhile, the possible degradation pathways of TC were proposed by the analysis of TC degradation intermediates and a comprehensive analysis of the rational reaction mechanism for TC degradation by LDOs-GC/PMS system was also performed. This work provides a new strategy for developing novel high-performance catalysts from industrial waste, while offering a green, cheap and sustainable approach to antibiotic degradation.[Abstract] [Full Text] [Related] [New Search]