These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production.
    Author: Yan X, Ying Y, Li K, Zhang Q, Wang K.
    Journal: J Environ Manage; 2024 Feb 14; 352():120028. PubMed ID: 38219668.
    Abstract:
    One of the key issues in manure management of livestock production is to reduce greenhouse gas (GHG) and air pollutant emissions, which lead to significant environmental footprint and human/animal health threats. This study provides a review of potentially efficacious technologies and management strategies that reduce GHG and air pollutant emissions during the three key stages of manure management in livestock production, i.e., animal housing, manure storage and treatment, and manure application. Several effective mitigation technologies and practices for each manure management stage are identified and analyzed in detail, including feeding formulation adjustment, frequent manure removal and air scrubber during animal housing stage; solid-liquid separation, manure covers for storage, acidification, anaerobic digestion and composting during manure storage and treatment stage; land application techniques at appropriate timing during manure application stage. The results indicated several promising approaches to reduce multiple gas emissions from the entire manure management. Removing manure 2-3 times per week or every day during animal housing stage is an effective and simple way to reduce GHG and air pollutant emissions. Acidification during manure storage and treatment stage can reduce ammonia and methane emissions by 33%-93% and 67%-87%, respectively and proper acid, such as lactic acid can also reduce nitrous oxide emission by about 90%. Shallow injection of manure for field application has the best performance in reducing ammonia emission by 62%-70% but increase nitrous oxide emission. The possible trade-off brings insight to the prioritization of targeted gas emissions for the researchers, stakeholders and policymakers, and also highlights the importance of assessing the mitigation technologies across the entire manure management chain. Implementing a combination of the management strategies needs comprehensive considerations about mitigation efficiency, technical feasibility, local regulations, climate condition, scalability and cost-effectiveness.
    [Abstract] [Full Text] [Related] [New Search]