These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of dual modification by high hydrostatic pressure and annealing on the physicochemical properties of bean starch. Author: Almeida RLJ, Santos NC, Feitoza JVF, Muniz CES, Eduardo RDS, Freire VA, de Alcântara Ribeiro VH, de Alcântara Silva VM, de Almeida Mota MM, de Assis Cavalcante J, de Almeida Silva R, da Costa GA, de Figueiredo MJ, Ribeiro CAC. Journal: Food Res Int; 2024 Feb; 177():113877. PubMed ID: 38225140. Abstract: This study investigated the physical modifications by high hydrostatic pressure (HHP) at 600 MPa for 30 min/30 °C, annealing (AN) at 50 °C/24 h and the combination of both (HHP + AN and AN + HHP) applied to yellow bean starch to verify changes in morphology, X-ray diffraction, molecular order, thermal properties and pasting properties of native (NS) and modified starches. Morphological analysis showed loss of sphericity and increase in diameter with the appearance of pores on the surface after application of treatments. The AN starch showed lower values of syneresis, degree of double helix (DD), order (DO), and viscosity of the paste obtained by RVA. It exhibited a Vh-type classification with the appearance of the amylose-lipid complex. However, the gelatinization temperatures, as well as the enthalpy of gelatinization, were significantly higher. On the other hand, the starch treated with HHP showed a higher Setback (SB) value. The greatest modifications were found for the starches subjected to the combined treatments (AN + HHP) and (HHP + AN), where the order of the treatments was significant for the morpho-structural changes of yellow bean starch. According to the micrographs, the surface aspect was altered, with AN + HHP showing greater irregularities and flat yet irregular faces, as well as a larger granule diameter (147.05). The X-ray diffractogram showed a reduction in crystallinity from 28.14 % (NS) to 18.09 % (AN + HHP) and classified the starch as type "A". The double modification (HHP + AN and AN + HHP) reduced the gelatinization temperature and the enthalpy of gelatinization but had no effect on the bands of the FT-IR spectrum. There was only a reduction in the degree of order and the double helix. Finally, the treatment with AN + HHP is more effective as the gelatinization with AN facilitates the application of HHP. Both methods used are classified as physical (thermal and non-thermal), aiming to minimize environmental impacts and achieve faster and safer morpho-structural modification without leaving chemical residues in the products.[Abstract] [Full Text] [Related] [New Search]