These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Homogeneous-like photocatalysis: covalent immobilization of an iridium(III) complex onto polystyrene brushes grafted on SiO2 nanoparticles as a mass/charge transfer-enhanced platform. Author: Chen S, Zhou Y, Ma X. Journal: Dalton Trans; 2024 Feb 06; 53(6):2731-2740. PubMed ID: 38226726. Abstract: Current heterogeneous photocatalysis faces the major bottlenecks of limited mass transfer, charge recombination and tedious immobilization of expensive photocatalysts. In this work, fac-Ir(ppy)3 is directly anchored at a low cost via covalent linkage to poly(4-vinyl benzyl chloride) (PVBC) brushes grafted on SiO2 nanoparticles (PVBC@SiO2 NPs) via Friedel-Crafts alkylation, affording PVBC@SiO2 NP-supported fac-Ir(ppy)3 with high luminous efficacies such as emission lifetime and quantum yield. In the reductive cross-coupling of benzaldehydes/acetophenones with 1,4-dicyanobenzene (1,4-DCB), the as-fabricated photocatalyst affords benzhydrols in the same yields as homogeneous fac-Ir(ppy)3, except for o-substituted benzaldehydes/acetophenones. In terms of the same yields as homogeneous fac-Ir(ppy)3, a new catalytic model, named homogeneous-like photocatalysis, is proposed. In this catalytic model, the open stretching of PVBC brushes in DMSO enables the anchored fac-Ir(ppy)3 to catalyse the reaction in a similar manner as homogeneous fac-Ir(ppy)3, effectively avoiding charge recombination and mass transfer limitation. Furthermore, no significant decrease in yield (<5%) is observed over eight catalytic cycles, due to the good chemical and mechanical stabilities of PVBC@SiO2 NP-supported fac-Ir(ppy)3. Overall, the immobilization of fac-Ir(ppy)3 onto the PVBC brushes grafted on SiO2 NPs provides a mass/charge transfer-enhanced platform for supported photocatalysts.[Abstract] [Full Text] [Related] [New Search]