These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CFD investigation of multiple peristaltic waves in a 3D unobstructed ureter. Author: Keni LG, Satish Shenoy B, Chethan KN, Hegde P, Prakashini K, Tamagawa M, Zuber M. Journal: Biomed Phys Eng Express; 2024 Jan 24; 10(2):. PubMed ID: 38227968. Abstract: Ureters are essential components of the urinary system and play a crucial role in the transportation of urine from the kidneys to the bladder. In the current study, a three-dimensional ureter is modelled. A series of peristaltic waves are made to travel on the ureter wall to analyse and measure parameter effects such as pressure, velocity, gradient pressure, and wall shear at different time steps. The flow dynamics in the ureters are thoroughly analysed using the commercially available ANSYS-CFX software. The maximum pressure is found in the triple wave at the ureteropelvic junction and maximum velocity is observed in the single and double wave motion due to the contraction produced by the peristalsis motion. The pressure gradient is maximum at the inlet of the ureter during the single bolus motion. The contraction produces a high jet of velocity due to neck formation and also helps in urine trapping in the form of a bolus, which leads to the formation of reverse flow. Due to the reduction in area, shear stress builds on the ureter wall. The high shear stress may rupture the junctions in the ureter.[Abstract] [Full Text] [Related] [New Search]