These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tire particles and their leachates reduce the filtration rate of the mussel Mytilus edulis. Author: Thomsen ES, Almeda R, Nielsen TG. Journal: Mar Environ Res; 2024 Mar; 195():106348. PubMed ID: 38237468. Abstract: Microplastics (MPs) are found in aquatic environments all over the world. Among MPs, tire wear particles (TWPs) are a major contributor to microplastic pollution, and their effects on marine ecosystems are of emerging concern. The blue mussel (Mytilus edulis) is a keystone species in coastal ecosystems with a high risk of exposure to microplastic pollution as the microplastics often overlap in size with the plankton consumed by mussels. In the present study, we investigated the effect of tire particles and their leachates on the filtration rates of M. edulis after short (72 h) and long-term (3 weeks) exposure. Acute exposure to leachates alone causes a significant decrease in the filtration rates of M. edulis with a low observed effect concentration (LOEC) of 1.25 g L-1 and a median effect concentration (EC50) = 3 g L-1. At a concentration of 1.25 g L-1, the filtration rate was reduced compared to the control on average by 38% when mussels were exposed to either TWP or leachates for 72 h. Similarly, mussels exposed to tire particles or their leachates for 3 weeks showed a 46% reduction in filtration rates, compared to the control group. A non-significant difference in filtration rate decrease was found between leachates alone or TWP, which indicates that leachates are the main responsible for the observed toxicity. Our findings indicate that elevated levels of TWP pollution can cause an adverse impact on M. edulis. This could disrupt the natural grazing pressure exerted by M. edulis on phytoplankton, potentially leading to an increased likelihood of algal blooms and hypoxia occurrence in coastal ecosystems.[Abstract] [Full Text] [Related] [New Search]