These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Review on recent advances in cellulose nanofibril based hybrid aerogels: Synthesis, properties and their applications.
    Author: Prasad C, Jeong SG, Won JS, Ramanjaneyulu S, Sangaraju S, Kerru N, Choi HY.
    Journal: Int J Biol Macromol; 2024 Mar; 261(Pt 1):129460. PubMed ID: 38237829.
    Abstract:
    With the depletion of fossil fuels and growing environmental concerns, the modernized era of technology is in desperate need of sustainable and eco-friendly materials. The industrial sector surely has enough resources to produce cost-effective, renewable, reusable, and sustainable raw materials. The family of very porous solid materials known as aerogels has a variety of exceptional qualities, such as high porosity, high specific surface area, ultralow density, and superior thermal, acoustic, and dielectric properties. As a result, aerogels have the potential to be used for many different purposes, such as absorbents, supercapacitors, energy storage, and catalytic supports. Recently, cellulose nanofibril (CNF) aerogels have attracted remarkable attention for their large-scale utilization because of their high absorption capacity, low density, biodegradability, large surface area, high porosity, and biocompatibility. Recent advancements have confirmed that CNF-based hybrid aerogels can be proposed as the most privileged and promising novel material in various applications. This comprehensive review highlights the recent reports of the CNF-based hybrid aerogels, including their properties and frequent preparation approaches, in addition to their new applications in the areas of fire retardant, water and oil separation, supercapacitors, environmental, and CO2 capture. It is also assumed that this article will promote additional investigation and establish innovative capabilities to enhance novel CNF-based hybrid aerogels with new and exciting applications.
    [Abstract] [Full Text] [Related] [New Search]