These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development and characterization of active poly (3-hydroxybutyrate) based composites with grapeseed oil and MgO nanoparticles for shelf-life extension of white button mushrooms (Agaricus bisporus).
    Author: Kumari SVG, Pakshirajan K, Pugazhenthi G.
    Journal: Int J Biol Macromol; 2024 Mar; 260(Pt 2):129521. PubMed ID: 38246453.
    Abstract:
    Poly (3-hydroxybutyrate) (PHB) is undoubtedly a potential substitute for petroleum-based non-biodegradable food packaging materials due to its renewability, high crystallinity, biocompatibility, and biodegradability. Nonetheless, PHB exhibits certain shortcomings, including low flexibility, moderate gas barrier properties, and negligible antimicrobial and antioxidant activities, which limit its direct application in food packaging. Loading essential oils can increase flexibility and induce antimicrobial and antioxidant activities in biopolymers but at the cost of reduced tensile strength. In contrast, nanofiller reinforcement can increase the tensile strength and barrier properties of such biopolymers. Therefore, to harness the synergistic effects of essential oil and nanofiller, PHB-based films incorporated with 5 wt% grapeseed oil (GS) and varying concentrations (0.1-1 wt%) of MgO nanoparticles (MgO NPs) were prepared in this study following simple sonication-assisted solution casting technique. Physicochemical, tensile, microstructural, optical, barrier, antimicrobial, and antioxidant properties were then evaluated for the prepared composite films. FESEM analysis of the PHB-based films with 5 wt% GS and 0.7 wt% MgO NPs (PHB/5GS/0.7MgO) confirmed its compact morphology without any aggregates, pores, or phase separation. In comparison with pristine PHB, the PHB/5GS/0.7MgO films demonstrated higher tensile strength (by 1.4-fold) and flexibility (by 30-fold), along with 79 and 90 % reduction in water vapor and oxygen transmission, respectively. In addition, PHB/5GS/0.7MgO showed good UV-blocking properties, 65.25 ± 0.98 % antioxidant activity, and completely inhibited the growth of Staphylococcus aureus and Escherichia coli. Moreover, PHB/5GS/0.7MgO films proved beneficial effects in terms of extending the shelf-life of white button mushrooms up to 6 days at ambient room conditions.
    [Abstract] [Full Text] [Related] [New Search]