These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Natural occurrence of tomato chlorosis virus on tomatillo (Physalis philadelphica) in the United States.
    Author: Kumar M, Torrance T, McAvoy T, Bag S.
    Journal: Plant Dis; 2024 Jan 22; ():. PubMed ID: 38252091.
    Abstract:
    Tomatillo (Physalis philadelphica L.) is an annual plant native to Mexico and Guatemala, and cultivated in other tropical and subtropical regions. In October 2023, tomatillo plants with interveinal yellowing of leaves, marginal chlorosis, leaf thickening, and leaf rolling symptoms (Figure 1) were observed at Colquitt and Tift County, Georgia, US. The disease incidence ranged from 80-100 % which reduced fruit quality and marketability. Twenty tomatillo leaves exhibiting severe symptoms were collected, and, sub-sampled of the leaves were pooled into microcentrifuge tubes. Further, MagMAX 96 viral RNA isolation kit (Thermo Fisher Scientific, US), was used for the extraction of (n=4) total nucleic acid (TNA) (Kavalappara et al. 2021). Symptomatic leaves were tested for the presence of insect-transmitted viruses such as begomovirus (tomato yellow leaf curl virus, TYLCV), potyvirus (turnip mosaic virus, TuMV), crinivirus (tomato infectious chlorosis virus, TICV; tomato chlorosis virus, ToCV), and tospovirus (orthotospovirus tomatomaculae, TSWV). Polymerase chain reaction (PCR) was performed for detecting TYLCV, using gene-specific primers (Kumar et al., 2023). However, for ToCV, TuMV and TICV detection, cDNA was prepared using 100 ng of TNA as a template, followed by the PCR ( Liu et al., 2012). Moreover, the detection of TSWV was conducted using immuno-strips (Adgia, US) following the manufacturer's instructions. ToCV was detected from all the tested samples, while TuMV, TICV, TYLCV and TSWV were not detected in any symptomatic tissues. In addition, RT-PCR was performed using gene-specific primers targeting the RNA-dependent RNA polymerase (RdRP) gene and the heat-shock protein 70 (Hsp70) gene of ToCV. The PCR amplicon of 439 bp encoding Hsp70 and 643 bp corresponding to RdRP was gel-purified and Sanger sequenced (Azenta Life Sciences, US). BLASTn analysis shows RdRP gene from ToCV-tomatillo (OR905600) has 100 % identity with ToCV of RNA1 segment (RdRP, GenBank accession no. AY903447, Florida, US), while Hsp70 gene (OR900219) has 100 % identity with ToCV of RNA2 segment (Hsp70, GenBank accession no. LC778246, Cairo, Egypt). In addition, the symptomatic tomatillo leaves were studied for transmission assay using tomato, employing non-viruliferous whiteflies (Bemisia tabaci) with 48 h of acquisition access period. Further, two weeks post-infection, the presence of ToCV was detected from the test plants while other whitefly-transmitted viruses remins undetected. In 2023, ToCV is widespread in tomato-growing counties, infecting commercially grown tomato cultivars with intermediate resistance against TYLCV-IL (Israel strain). However, tomatillo plants infected with TuMV in California (Liu et al., 2012), TSWV in Georgia, (Díaz-Pérez and Pappu 2000) and TYLCV in Mexico (Gámez-Jiménez et al. 2009) were reported. This study suggests that tomatillo could be a permissive host for ToCV while restrictive to other prevalent viruses in the region. A recent investigation speculates a potential synergistic interaction between ToCV and TYLCV-IL, exacerbating the breakdown of host resistance in tomato (Fiallo-Olivé et al. 2019, Kumar et al. 2023). To the best of our knowledge, this is the first report for the natural incidence of ToCV on tomatillo within the US. The findings will contribute to developing more effective management strategies against emerging viral threats.
    [Abstract] [Full Text] [Related] [New Search]