These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Do soleus responses to transcutaneous spinal cord stimulation show similar changes to H-reflex in response to Achilles tendon vibration?
    Author: Gravholt A, Pfenninger C, Grospretre S, Martin A, Lapole T.
    Journal: Eur J Appl Physiol; 2024 Jun; 124(6):1821-1833. PubMed ID: 38252303.
    Abstract:
    INTRODUCTION/PURPOSE: Recently, the use of transcutaneous spinal cord stimulation (TSCS) has been proposed as a viable alternative to the H-reflex. The aim of the current study was to investigate to what extent the two modes of spinal cord excitability investigation would be similarly sensitive to the well-known vibration-induced depression. METHODS: Fourteen healthy participants (8 men and 6 women; age: 26.7 ± 4.8 years) were engaged in the study. The right soleus H-reflex and TSCS responses were recorded at baseline (PRE), during right Achilles tendon vibration (VIB) and following 20 min of vibration exposure (POST-VIB). Care was taken to match H-reflex and TSCS responses amplitude at PRE and to maintain effective stimulus intensities constant throughout time points. RESULTS: The statistical analysis showed a significant effect of time for the H-reflex, with VIB (13 ± 5% of maximal M-wave (Mmax) and POST-VIB (36 ± 4% of Mmax) values being lower than PRE-values (48 ± 6% of Mmax). Similarly, TSCS responses changed over time, VIB (9 ± 5% of Mmax) and POST-VIB (27 ± 5% of Mmax) values being lower than PRE-values (46 ± 6% of Mmax). Pearson correlation analyses revealed positive correlation between H-reflex and TSCS responses PRE-to-VIB changes, but not for PRE- to POST-VIB changes. CONCLUSION: While the sensitivity of TSCS seems to be similar to the gold standard H-reflex to highlight the vibratory paradox, both responses showed different sensitivity to the effects of prolonged vibration, suggesting slightly different pathways may actually contribute to evoked responses of both stimulation modalities.
    [Abstract] [Full Text] [Related] [New Search]