These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of microRNA-4739 in enhancing cisplatin chemosensitivity by negative regulation of RHBDD2 in human cervical cancer cells.
    Author: Li Y, Zhou Z, Qu J, Gong P, Wei Y, Sun Y.
    Journal: Cell Mol Biol Lett; 2024 Jan 25; 29(1):20. PubMed ID: 38267862.
    Abstract:
    BACKGROUND: Cisplatin (DDP) is a widely used chemotherapy drug for advanced cervical cancer (CC), but resistance poses a significant challenge. While miR-4739 has been implicated in tumor development, its specific role in regulating DDP resistance in CC remains unclear. METHODS: We analyzed the expression levels of miR-4739 and RHBDD2 in DDP-resistant and DDP-sensitive CC tissues using quantitative real-time polymerase chain reaction (PCR) and assessed their correlation through Spearman's correlation analysis. DDP-resistant CC cell lines (HeLa/DDP and SiHa/DDP) were established by gradually increasing DDP concentrations, followed by transfection with miR-4739 mimics, si-RHBDD2, or a RHBDD2 overexpression vector. A series of functional assays, including CCK-8 assay, colony formation, flow cytometry, and transwell assay were performed. The interaction between miR-4739 and RHBDD2 was confirmed by luciferase reporter assay. We examined the protein levels of RHBDD2, P-gP, MRP1, cleaved caspase-3, and E-cadherin through western blot analysis. Moreover, we generated xenograft tumors by injecting stably transfected HeLa/DDP cells into mice to compare their tumorigenesis capacity. RESULTS: We observed downregulation of miR-4739 and upregulation of RHBDD2 in DDP-resistant CC tissues and cell lines. MiR-4739 was shown to directly bind to RHBDD2 gene sequences to repress RHBDD2 expression in HeLa/DDP and SiHa/DDP cells. Our in vitro and in vivo experiments demonstrated that overexpressing miR-4739 overcame DDP resistance in CC cells by targeting RHBDD2. Furthermore, RHBDD2 overexpression reversed the effects of miR-4739 mimics on drug-resistance-related proteins (P-gP and MRP1) and the expression of cleaved caspase-3 and E-cadherin in HeLa/DDP cells. CONCLUSIONS: In summary, our study revealed that miR-4739 can reverse DDP resistance by modulating RHBDD2 in CC cells.
    [Abstract] [Full Text] [Related] [New Search]