These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary glycine supplementation enhances glutathione availability in tissues of pigs with intrauterine growth restriction. Author: He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Journal: J Anim Sci; 2024 Jan 03; 102():. PubMed ID: 38271555. Abstract: This study tested the hypothesis that dietary supplementation with glycine enhances the synthesis and concentrations of glutathione (GSH, a major antioxidant) in tissues of pigs with intrauterine growth restriction (IUGR). At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of two groups, representing supplementation with 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Blood and other tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine GSH, oxidized GSH (GSSG), and activities of GSH-metabolic enzymes. Results indicated that concentrations of GSH + GSSG or GSH in plasma, liver, and jejunum (P < 0.001) and concentrations of GSH in longissimus lumborum and gastrocnemius muscles (P < 0.05) were lower in IUGR pigs than in NBW pigs. In contrast, IUGR increased GSSG/GSH ratios (an indicator of oxidative stress) in plasma (P < 0.001), jejunum (P < 0.001), both muscles (P < 0.05), and pancreas (P = 0.001), while decreasing activities of γ-glutamylcysteine synthetase and GSH synthetase in liver (P < 0.001) and jejunum (P < 0.01); and GSH reductase in jejunum (P < 0.01), longissimus lumborum muscle (P < 0.01), gastrocnemius muscle (P < 0.05), and pancreas (P < 0.01). In addition, IUGR pigs had greater (P < 0.001) concentrations of thiobarbituric acid reactive substances (TBARS; an indicator of lipid peroxidation) in plasma, jejunum, muscles, and pancreas than NBW pigs. Compared with isonitrogenous controls, dietary glycine supplementation increased concentrations of GSH plus GSSG and GSH in plasma (P < 0.01), liver (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P = 0.001), and gastrocnemius muscle (P < 0.05); activities of GSH-synthetic enzymes in liver (P < 0.01) and jejunum (P < 0.05), while reducing GSSG/GSH ratios in plasma (P < 0.001), jejunum (P < 0.001), longissimus lumborum muscle (P < 0.001), gastrocnemius muscle (P = 0.01), pancreas (P < 0.05), and kidneys (P < 0.01). Concentrations of GSH plus GSSG, GSH, and GSSG/GSH ratios in kidneys were not affected (P > 0.05) by IUGR. Furthermore, glycine supplementation reduced (P < 0.001) TBARS concentrations in plasma, jejunum, muscles, and pancreas. Collectively, IUGR reduced GSH availability and induced oxidative stress in pig tissues, and these abnormalities were prevented by dietary glycine supplementation in a tissue-specific manner. Pigs have the highest rate of intrauterine growth restriction (IUGR) among livestock species. These pigs, which have low birth weights (<1.1 kg) and account for ~15% to 20% of newborn pigs, are often culled after birth because they have lower growth performance and feed efficiency due to multiple factors (including oxidative stress in tissues), when compared with litter mates with normal birth weights (NBW). Much evidence shows that glutathione, which is a tripeptide synthesized from glutamate, glycine, and cysteine via enzymes (biological catalysts, γ-glutamylcysteine synthetase, and glutathione synthetase), is a major low-molecular-weight antioxidant in animal cells. Based on the findings of our recent study that dietary glycine supplementation enhanced the growth performance of IUGR pigs from weaning to market weight, the current study tested the hypothesis that this nutritional strategy increased the synthesis and availability of glutathione in their tissues. Our results indicated that the key organs of the digestive system (the small intestine, liver, and pancreas) as well as both longissimus lumborum and gastrocnemius muscles of IUGR pigs had lower concentrations of glutathione as compared with NBW pigs, due to reductions in both the activities of glutathione-synthetic enzymes and the availability of glycine. Dietary supplementation with 1% glycine prevented these metabolic deficiencies in tissues of IUGR pigs. Our findings support the notion that IUGR pigs fed conventional corn- and soybean meal-based diets do not synthesize adequate glutathione and that dietary glycine supplementation plays an important role in enhancing the availability of glutathione and mitigating oxidative stress to improve health and growth in these compromised animals.[Abstract] [Full Text] [Related] [New Search]