These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biomechanical evaluation of different oblique lumbar interbody fusion constructs: a finite element analysis. Author: Xu Z, Zheng Q, Zhang L, Chen R, Li Z, Xu W. Journal: BMC Musculoskelet Disord; 2024 Jan 27; 25(1):97. PubMed ID: 38279094. Abstract: BACKGROUND: Finite element analysis (FEA) was performed to investigate the biomechanical differences between different adjunct fixation methods for oblique lumbar interbody fusion (OLIF) and to further analyze its effect on adjacent segmental degeneration. METHODS: We built a single-segment (Si-segment) finite element model (FEM) for L4-5 and a double-segment (Do-segment) FEM for L3-5. Each complete FEM was supplemented and modified, and both developed two surgical models of OLIF with assisted internal fixation. They were OLIF with posterior bilateral percutaneous pedicle screw (TINA system) fixation (OLIF + BPS) and OLIF with lateral plate system (OLIF + LPS). The range of motion (ROM) and displacement of the vertebral body, cage stress, adjacent segment disc stress, and spinal ligament tension were recorded for the four models during flexion/extension, right/left bending, and right/left rotation by applying follower load. RESULTS: For the BPS and LPS systems in the six postures of flexion, extension, right/left bending, and right/left rotation, the ROM of L4 in the Si-segment FEM were 0.32°/1.83°, 0.33°/1.34°, 0.23°/0.47°, 0.24°/0.45°, 0.33°/0.79°, and 0.34°/0.62°; the ROM of L4 in the Do-segment FEM were 0.39°/2.00°, 0.37°/1.38°, 0.23°/0.47°, 0.21°/0.44°, 0.33°/0.57°, and 0.31°/0.62°, and the ROM of L3 in the Do-segment FEM were 6.03°/7.31°, 2.52°/3.50°, 4.21°/4.38°, 4.21°/4.42°, 2.09°/2.32°, and 2.07°/2.43°. BPS system had less vertebral displacement, less cage maximum stress, and less spinal ligament tension in Si/Do-segment FEM relative to the LPS system. BPS system had a smaller upper adjacent vertebral ROM, greater intervertebral disc stress in terms of left and right bending as well as left and right rotation compared to the LPS system in the L3-4 of the Do-segment FEM. There was little biomechanical difference between the same fixation system in the Si/Do-segment FEM. CONCLUSIONS: Our finite element analysis showed that compared to OLIF + LPS, OLIF + BPS (TINA) is more effective in reducing interbody stress and spinal ligament tension, and it better maintains the stability of the target segment and provides a better fusion environment to resist cage subsidence. However, OLIF + BPS (TINA) may be more likely to cause adjacent segment degeneration than OLIF + LPS.[Abstract] [Full Text] [Related] [New Search]