These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A subclass II bHLH transcription factor in Marchantia polymorpha gives insight into the ancestral land plant trait of spore formation.
    Author: Levins J, Dierschke T, Bowman JL.
    Journal: Curr Biol; 2024 Feb 26; 34(4):895-901.e5. PubMed ID: 38280380.
    Abstract:
    Sporopollenin is often said to be one of the toughest biopolymers known to man. The shift in dormancy cell wall deposition from around the diploid zygotes of charophycean algae to sporopollenin around the haploid spores of land plants essentially imparted onto land plants the gift of passive motility, a key acquisition that contributed to their vast and successful colonization across terrestrial habitats.1,2 A putative transcription factor controlling the land plant mode of sporopollenin deposition is the subclass II bHLHs, which are conserved and novel to land plants, with mutants of genes in angiosperms and mosses divulging roles relating to tapetum degeneration and spore development.3,4,5,6,7 We demonstrate that a subclass II bHLH gene, MpbHLH37, regulates sporopollenin biosynthesis and deposition in the model liverwort Marchantia polymorpha. Mpbhlh37 sporophytes show a striking loss of secondary wall deposits of the capsule wall, the elaters, and the spore exine, all while maintaining spore viability, identifying MpbHLH37 as a master regulator of secondary wall deposits of the sporophyte. Localization of MpbHLH37 to the capsule wall and elaters of the sporophyte directly designates these tissue types as a bona fide tapetum in liverworts, giving support to the notion that the presence of a tapetum is an ancestral land plant trait. Finally, as early land plant spore walls exhibit evidence of tapetal deposition,8,9,10,11,12 a tapetal capsule wall could have provided these plants with a developmental mechanism for sporopollenin deposition.
    [Abstract] [Full Text] [Related] [New Search]