These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in cytoplasmic free calcium caused by halothane. Role of the plasma membrane and intracellular Ca2+ stores. Author: Klip A, Britt BA, Elliott ME, Walker D, Ramlal T, Pegg W. Journal: Biochem Cell Biol; 1986 Nov; 64(11):1181-9. PubMed ID: 3828110. Abstract: Malignant hyperthermia is a muscle disease characterized by an abnormal response to anaesthetics, stress, and exercise. It is typified by muscle contracture and a dramatic elevation in body temperature. A defect in the regulation of the concentration of cytoplasmic free calcium, [Ca2]i, is thought to underlie this disease, but the actual [Ca2+]i was not measurable until recently. We have shown that the anaesthetic halothane increases [Ca2+]i in isolated lymphocytes from malignant hyperthermia-susceptible humans and pigs but not in the normal counterparts. In this report we extend these observations to a larger number of cases and analyze the molecular mechanisms responsible for the increase. The halothane-mediated rise in [Ca2+]i required external Ca2+ and was prevented by nifedipine, an inhibitor of the voltage-sensitive Ca2+ channels of the cell membrane. In addition, the effect of halothane on the releasable Ca2+ from intracellular stores was determined by measuring the size of the releasable pool before and after addition of the anaesthetic. After addition of halothane, about 73% of this Ca2+ pool was still available for release by the Ca2+ ionophore ionomycin in cells from normal humans and pigs. In contrast, only about 45% of the free Ca2+ in intracellular stores was left after treatment with halothane in cells from malignant hyperthermia-susceptible humans and swine. These results indicate that halothane acts both at the cell membrane and at intracellular organelles, and that this action results in a net increase in [Ca2+]i in malignant hyperthermia, but not in normal cells. The action at the cell membrane appears to be on the voltage-sensitive Ca2+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]