These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: D-[3H]aspartate release from hippocampus slices studied in a multiwell system: controlling factors and postnatal development of release.
    Author: Minc-Golomb D, Levy Y, Kleinberger N, Schramm M.
    Journal: Brain Res; 1987 Feb 03; 402(2):255-63. PubMed ID: 3828796.
    Abstract:
    Medium components and various factors were tested to define optimal conditions for D-[3H]aspartate release. Isolation of the hippocampus and preparation of the slices in a medium without Ca2+ increased the release of D-[3H]aspartate in response to veratridine when subsequently tested in a regular Ca2+ containing medium. Apparently, the absence of Ca2+ during preparation of the slices reduced irreversible damage due to hypoxic conditions which prevail throughout the interval between killing the animal and immersion of the slices in a well oxygenated medium. Substitution of 10 mM Mg2+ for Ca2+ was an efficient procedure to test for Ca2+ dependence of D-[3H]aspartate release induced by veratridine. The inhibition was readily reversible when Ca2+ was readded. Veratridine (50 microM) was superior to high K+ (45 mM) in inducing D-[3H]aspartate release under all conditions tested in slices of mature animals. Furthermore, veratridine-induced release could be completely blocked by tetrodotoxin while K+-induced release was essentially unaffected by this toxin. Postnatal development of the D-[3H]aspartate release induced by veratridine was found to require 40-45 days, whereas release induced by K+ reached about 80% of maximum at postnatal day 22. K+-induced release appears to reach maturation when most hippocampal cells have been formed while veratridine-induced release probably requires completion of the neural circuit, involving also extensive sodium channel formation. These investigations were conveniently performed using a modified plastic culture box in which 24 slice systems can be studied simultaneously.
    [Abstract] [Full Text] [Related] [New Search]