These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mo-X4 (X = O, NH and S)-mediated triphenylene-based two-dimensional carbon-rich conjugate frameworks for an efficient nitrogen reduction reaction.
    Author: Qiao M, Xie J, Zhu D.
    Journal: Nanoscale; 2024 Feb 15; 16(7):3676-3684. PubMed ID: 38288848.
    Abstract:
    The electrocatalytic nitrogen reduction reaction (NRR) is a highly competitive approach for the ammonia synthesis to overcome the problems of high energy consumption and air pollution by the traditional Haber-Bosch process. However, the challenges of inert N2 molecule activation and the competitive hydrogen evolution reaction (HER) restrict the real utilization of the NRR. Herein, by means of density functional theory (DFT) calculations, we proposed three two-dimensional carbon-rich conjugate frameworks (2D-CCFs) with hexa-substituted triphenylene organic linkers with a metal atom Mo and functional groups X (X = O, NH, and S), namely Mo3(HOTP)2, Mo3(HITP)2 and Mo3(THT)2, to investigate their NRR performance. Our theoretical calculations reveal that Mo atoms in 2D-CCFs can efficiently capture and activate N2 molecules. Among the three structures, Mo3(HOTP)2 exhibited the most superior performance toward the NRR with a favorable limiting potential of -0.41 V and good selectivity for the HER. Furthermore, the catalytic efficiency of 2D-CCFs can be regulated by changing the atoms X in Mo-X4 motifs, providing a new scenario for the development of highly efficient NRR catalysts.
    [Abstract] [Full Text] [Related] [New Search]