These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Evaluation of the Quality Performance of Biochemical Analytes in Clinical Biochemistry Laboratory Using Six Sigma Matrices.
    Author: Panda CR, Kumari S, Mangaraj M, Nayak S.
    Journal: Cureus; 2023 Dec; 15(12):e51386. PubMed ID: 38292960.
    Abstract:
    Introduction This study was conducted to assess the analytical performance of biochemical tests using Six Sigma methodology and to assess the underlying causes of unsatisfied performance of analytes with a sigma value of less than 4 using quality goal index (QGI) and root cause analysis (RCA). Methodology Daily data for internal quality control (IQC) for both level 1 (L1) and level 2 (L2) and monthly data for external quality assessment for a period of six months were recorded. The coefficient of variation (CV), bias, and total allowable error (TEa) were calculated to analyze the sigma (σ) values for 19 biochemical analytes. Quality goal index (QGI) analysis was done to analyze impressions and inaccuracies in analyte performance having a sigma value of less than 4. Root cause analysis (RCA) was done to evaluate the possible causes that can improve quality performance. Results Creatinine and high-density lipoprotein (HDL) had sigma metrics of ≤2.0, and chloride, aspartate aminotransferase (AST), and alkaline phosphatase (ALP) had sigma values between 2 and 3. Glucose, total protein (TP), phosphate (Phos), and potassium had sigma values between 4 and 5 in level 1 QC. Sigma grading for level 2 quality control (QC) also gave similar results. For analytes with σ < 4, QGI analysis exposed inaccuracy or imprecision issues and identified errors such as the reconstitution of IQC, storage temperature, and air bubbles while processing the QC, being common causes of poor performance. Conclusion Six Sigma approach is helpful for quality assurance and identifying areas for improvement. Assessing Six Sigma metrics should be a routine practice to decide the frequency of QC run and to detect errors in analysis.
    [Abstract] [Full Text] [Related] [New Search]