These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Research on rice starch gel preparation and crosslink network structure-rheological property based on direct-writing 3D printing. Author: Xiao X, Yang L, Xu Z, Huang P, Shu C, Song S, Zhang Y, Pei H. Journal: Heliyon; 2024 Jan 30; 10(2):e24057. PubMed ID: 38293512. Abstract: Amylopectin and amylose components are natural polymers within rice starch granules, intertwined in specific conditions to form gel polymerized with pore crosslink network, has potential printing properties. In this study, a rice starch gel preparation scheme is proposed for stable properties, and starch granule phase transition mechanism is analyzed based on RVA test during preparation, it can be divided into four-stage, swelling, reacting, homogenizing and self-assembling stages. Gel surface tension and contact angle tested with starch concentration effect, a correlation is developed, reflecting a competition result to gel droplet macro-morphology between the intermolecular cohesion and crosslink network. SEM is used to reveal typical crosslink structures of different starch molecular component proportions, providing objective support for starch gel rheologic property change. Results indicate gel interior crosslink network formed under concentration 12 %, the gel with amylose 4.475 % presents better printing accuracy. Gel shear modulus positively correlated with amylose proportion. Japonica gel under 20 % is of higher viscosity and rapid reassembly ability after interior crosslink network is broken. Max dynamic viscosity is positively correlated with starch concentration. The study aims to provide theoretical and practical support for in-depth analysis of rice starch material application in direct-write 3D printing.[Abstract] [Full Text] [Related] [New Search]