These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of flip angle and radiofrequency pulse phase to maximize steady-state magnetization in three-dimensional missing pulse steady-state free precession. Author: Kobayashi N. Journal: NMR Biomed; 2024 Jun; 37(6):e5112. PubMed ID: 38299770. Abstract: Missing pulse (MP) steady-state free precession (SSFP) is a magnetic resonance imaging (MRI) pulse sequence that is highly tolerant to the magnetic field inhomogeneity. In this study, optimal flip angle and radiofrequency (RF) phase scheduling in three-dimensional (3D) MP-SSFP is introduced to maximize the steady-state magnetization while keeping broadband excitation to cover widely distributed frequencies generated by inhomogeneous magnetic fields. Numerical optimization based on extended phase graph (EPG) simulation was performed to maximize the MP-SSFP steady-state magnetization. To limit the specific absorption rate (SAR) associated with the broadband excitation in 3D MP-SSFP, SAR constraint was introduced in the numerical optimization. Optimized flip angle and RF phase settings were experimentally tested by introducing a linear inhomogeneous magnetic field in a range of 10-20 mT/m and using a phantom with known T1/T2 relaxation and diffusion parameters at 3 T. The experimental results were validated through comparisons with EPG simulation. Image contrasts and molecular diffusion effects were investigated in in vivo human brain imaging with 3D MP-SSFP with the optimal flip angle and RF phase settings. In the phantom measurements, the optimal flip angle and RF phase settings improved the MP-SSFP steady-state magnetization/signal-to-noise ratio by up to 41% under the fixed SAR conditions, which matched well with EPG simulation results. In vivo brain imaging with the optimal RF pulse settings provided T2-like image contrasts. Diffusion effects were relatively minor with the linear inhomogeneous field of 10-20 mT/m for white and gray matter, but cerebrospinal fluid showed conspicuous signal intensity attenuation as the linear inhomogeneous field increased. Numerical optimization achieved significant improvement in the steady-state magnetization in MP-SSFP compared with the RF pulse settings used in previous studies. The proposed flip angle and RF phase optimization is promising to improve 3D MP-SSFP image quality for MRI in inhomogeneous magnetic fields.[Abstract] [Full Text] [Related] [New Search]