These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interlayer Engineering of Layered Materials for Efficient Ion Separation and Storage.
    Author: Yang J, Zhang Y, Ge Y, Tang S, Li J, Zhang H, Shi X, Wang Z, Tian X.
    Journal: Adv Mater; 2024 May; 36(18):e2311141. PubMed ID: 38306408.
    Abstract:
    Layered materials are characterized by strong in-plane covalent chemical bonds within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, which enables the insertion of guest species into the interlayer gap. Rational design and regulation of interlayer nanochannels are crucial for converting these layered materials and their 2D derivatives into ion separation membranes or battery electrodes. Herein, based on the latest progress in layered materials and their derivative nanosheets, various interlayer engineering methods are briefly introduced, along with the effects of intercalated species on the crystal structure and interlayer coupling of the host layered materials. Their applications in the ion separation and energy storage fields are then summarized, with a focus on interlayer engineering to improve selective ion transport and ion storage performance. Finally, future research opportunities and challenges in this emerging field are comprehensively discussed.
    [Abstract] [Full Text] [Related] [New Search]