These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cyclopentadienone Diphosphine Ruthenium Complex: A Designed Catalyst for the Hydrogenation of Carbon Dioxide to Methanol.
    Author: Tang Y, Pu M, Lei M.
    Journal: J Org Chem; 2024 Feb 16; 89(4):2431-2439. PubMed ID: 38306607.
    Abstract:
    The development of homogeneous metal catalysts for the efficient hydrogenation of carbon dioxide (CO2) into methanol (CH3OH) remains a significant challenge. In this study, a new cyclopentadienone diphosphine ligand (CPDDP ligand) was designed, which could coordinate with ruthenium to form a Ru-CPDDP complex to efficiently catalyze the CO2-to-methanol process using dihydrogen (H2) as the hydrogen resource based on density functional theory (DFT) mechanistic investigation. This process consists of three catalytic cycles, stage I (the hydrogenation of CO2 to HCOOH), stage II (the hydrogenation of HCOOH to HCHO), and stage III (the hydrogenation of HCHO to CH3OH). The calculated free energy barriers for the hydrogen transfer (HT) steps of stage I, stage II, and stage III are 7.5, 14.5, and 3.5 kcal/mol, respectively. The most favorable pathway of the dihydrogen activation (DA) steps of three stages to regenerate catalytic species is proposed to be the formate-assisted DA step with a free energy barrier of 10.4 kcal/mol. The calculated results indicate that the designed Ru-CPDDP and Ru-CPDDPEt complexes could catalyze hydrogenation of CO2 to CH3OH (HCM) under mild conditions and that the transition-metal owning designed CPDDP ligand framework be one kind of promising potential efficient catalysts for HCM.
    [Abstract] [Full Text] [Related] [New Search]