These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conductive hydrogels based on tragacanth and silk fibroin containing dopamine functionalized carboxyl-capped aniline pentamer: Merging hemostasis, antibacterial, and anti-oxidant properties into a multifunctional hydrogel for burn wound healing.
    Author: Babaluei M, Mojarab Y, Mottaghitalab F, Saeb MR, Farokhi M.
    Journal: Int J Biol Macromol; 2024 Mar; 261(Pt 2):129932. PubMed ID: 38309399.
    Abstract:
    Hydrogels possessing both conductive characteristics and notable antibacterial and antioxidant properties hold considerable significance within the realm of wound healing and recovery. The object of current study is the development of conductive hydrogels with antibacterial and antioxidant properties, emphasizing their potential for effective wound healing, especially in treating third-degree burns. For this purpose, various conductive hydrogels are developed based on tragacanth and silk fibroin, with variable dopamine functionalized carboxyl-capped aniline pentamer (CAP@DA). The FTIR analysis confirms that the CAP powder was successfully synthesized and modified with DA. The results show that the incorporation of CAP@DA into hydrogels can increase the porosity and swellability of the hydrogels. Additionally, the mechanical and viscoelastic properties of the hydrogels are also improved. The release of vancomycin from the hydrogels is sustained over time, and the hydrogels are effective in inhibiting the growth of Methicillin-resistant Staphylococcus aureus (MRSA). In vitro cell studies of the hydrogels show that all hydrogels are biocompatible and support cell attachment. The hydrogels' tissue adhesiveness yielded a satisfactory hemostatic outcome in a rat-liver injury model. The third-degree burn was created on the dorsal back paravertebral region of the rats and then grafted with hydrogels. The burn was monitored for 3, 7, and 14 days to evaluate the efficacy of the hydrogel in promoting wound healing. The hydrogels revealed treatment effect, resulting in enhancements in wound closure, dermal collagen matrix production, new blood formation, and anti-inflammatory properties. Better results were obtained for hydrogel with increasing CAP@DA. In summary, the multifunctional conducive hydrogel, featuring potent antibacterial properties, markedly facilitated the wound regeneration process.
    [Abstract] [Full Text] [Related] [New Search]