These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient adsorptive removal of used drugs during the COVID-19 pandemic from contaminated water by magnetic graphene oxide/MIL-88 metal-organic framework/alginate hydrogel beads.
    Author: Karimi S, Namazi H.
    Journal: Chemosphere; 2024 Mar; 352():141397. PubMed ID: 38325613.
    Abstract:
    Currently, the presence of drugs used in the COVID-19 pandemic in water bodies is worrisome due to their high toxicity, which necessitates their critical removal by developing highly efficient adsorbents. Hence, in this study, alginate hydrogel beads of magnetic graphene oxide@MIL-88 metal-organic framework (GO@Fe3O4@MIL-88@Alg) were prepared for the first time and then utilized as a new absorption system for the removal of COVID-19 drugs such as doxycycline (DOX), hydroxychloroquine (HCQ), naproxen (NAP), and dipyrone (DIP) from aqueous solutions by batch adsorption manner. The effects of different experimental factors, such as adsorbent dosage, contact time, pH, drug concentration, temperature, ionic strength, presence of an external magnetic field (EMF), and magnet distance from the adsorption flask were optimized for the removal of COVID-19 drugs. The adsorption equilibrium isotherm proved that the adsorption process of DOX, HCQ, NAP, and DIP drugs on GO@Fe3O4@MIL-88@Alg hydrogel beads conformed to the Langmuir model and followed the pseudo-second-order adsorption kinetics. The maximum adsorption capacities of DOX, HCQ, NAP, and DIP drugs obtained for GO@Fe3O4@MIL-88@Alg hydrogel beads with the Langmuir model were 131.57, 79.92, 55.55, and 49.26 mg/g at 298 K, respectively. The thermodynamic study suggested a spontaneous endothermic adsorption process. Also, the conclusion from this study confirmed the validity of GO@Fe3O4@MIL-88@Alg hydrogel beads for excellent removal of COVID-19 drugs from water samples. It was also found that the GO@Fe3O4@MIL-88@Alg hydrogel beads could be reused with satisfactory removal efficiency in six cycles. Based on the study, the GO@Fe3O4@MIL-88@Alg hydrogel beads could be considered a sustainable, simple, economical, environmentally friendly absorption system for the removal of pharmaceutical contaminants from water.
    [Abstract] [Full Text] [Related] [New Search]