These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: RIM-BP2 regulates Ca2+ channel abundance and neurotransmitter release at hippocampal mossy fiber terminals.
    Author: Miyano R, Sakamoto H, Hirose K, Sakaba T.
    Journal: Elife; 2024 Feb 08; 12():. PubMed ID: 38329474.
    Abstract:
    Synaptic vesicles dock and fuse at the presynaptic active zone (AZ), the specialized site for transmitter release. AZ proteins play multiple roles such as recruitment of Ca2+ channels as well as synaptic vesicle docking, priming, and fusion. However, the precise role of each AZ protein type remains unknown. In order to dissect the role of RIM-BP2 at mammalian cortical synapses having low release probability, we applied direct electrophysiological recording and super-resolution imaging to hippocampal mossy fiber terminals of RIM-BP2 knockout (KO) mice. By using direct presynaptic recording, we found the reduced Ca2+ currents. The measurements of excitatory postsynaptic currents (EPSCs) and presynaptic capacitance suggested that the initial release probability was lowered because of the reduced Ca2+ influx and impaired fusion competence in RIM-BP2 KO. Nevertheless, larger Ca2+ influx restored release partially. Consistent with presynaptic recording, STED microscopy suggested less abundance of P/Q-type Ca2+ channels at AZs deficient in RIM-BP2. Our results suggest that the RIM-BP2 regulates both Ca2+ channel abundance and transmitter release at mossy fiber synapses.
    [Abstract] [Full Text] [Related] [New Search]