These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation of amphiphilic polyquaternium nanofiber films with antibacterial activity via environmentally friendly microfluidic-blow-spinning for green food packaging applications. Author: Deng ZA, Zhao Z, Shen C, Cai Z, Wu D, Zhu B, Chen K. Journal: Food Chem; 2024 Jun 30; 444():138632. PubMed ID: 38330606. Abstract: Green food packaging plays an important role in environmental protection and sustainable development. Therefore, it is advisable to employ low-energy consumption manufacturing techniques, select environmentally friendly materials, and focus on cost-effectiveness with high production yields during the production process. In this study, an amphiphilic polyquaternium called PBzCl was proposed and synthesized by free radical polymerization of cost-efficient quaternary ammonium salts and methacrylate monomers. Then, biodegradable PCL and PVP were used to rapidly prepare the PBzCl@PCL/PVP nanofiber films via environmentally friendly microfluidic-blow-spinning (MBS). The best antibacterial effect was observed at a PBzCl loading concentration of 13.5%, and the PBzCl@PCL/PVP nanofiber films had 91% and 100% antibacterial rates against Escherichia coli and Staphylococcus aureus, respectively. Besides, the loading of PBzCl improved the water stability of the PCL/PVP nanofiber films, and the films also showed excellent biocompatibility. Overall, PBzCl@PCL/PVP nanofibre films have promising food packaging potential.[Abstract] [Full Text] [Related] [New Search]