These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Odd Nonlinear Conductivity under Spatial Inversion in Chiral Tellurium.
    Author: Suárez-Rodríguez M, Martín-García B, Skowroński W, Calavalle F, Tsirkin SS, Souza I, De Juan F, Chuvilin A, Fert A, Gobbi M, Casanova F, Hueso LE.
    Journal: Phys Rev Lett; 2024 Jan 26; 132(4):046303. PubMed ID: 38335368.
    Abstract:
    Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the nonlinear conductivity remain to be explored. Here, we report on a large, nonlinear conductivity in chiral tellurium. By measuring samples with opposite handedness, we demonstrate that the nonlinear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the nonlinear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral tellurium as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and nonlinear transport; but also to develop wireless rectifiers and energy-harvesting chiral devices.
    [Abstract] [Full Text] [Related] [New Search]