These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One-pot solvothermal synthesis of Cu-Fe-MOF for efficiently activating peroxymonosulfate to degrade organic pollutants in water:Effect of electron shuttle.
    Author: Wang H, Dai Y, Wang Y, Yin L.
    Journal: Chemosphere; 2024 Mar; 352():141333. PubMed ID: 38336036.
    Abstract:
    Persulfate-based advanced oxidation processes (PS-AOPs) show a bright prospect in sewage purification. The development of efficient catalysts with simple preparation process and eco-friendliness is the key for their applying in practical water treatment. Herein, a bimetallic Cu-Fe metal organic framework (MOF) was simply synthesized by using one-pot solvothermal methods and employed for activating peroxymonosulfate (PMS) to degrade organic pollutants in water. The Cu-Fe-MOF/PMS exhibited excellent degradation efficiencies (over 95% in 30 min) for a variety of pollutants, including phenol, bisphenol A, 2,4-dichlorophenol, methyl blue, rhodamine B, tetracycline and sulfamethoxazole. The degradation efficiency was impacted by dosages of Cu-Fe-MOF, PMS concentrations, reaction temperature, solution pH and anionic species. Phenol could be efficiently decomposed in a wide pH range of 5-9, with the highest degradation and mineralization efficiency of nearly 100% and 70%, respectively. Free radicals and non-free radicals participated in degrading of phenol at the same time, with dominantly free radical process, because sulfate radicals (SO4·-) and hydroxyl radicals (·OH) were the primary active substances by contribution calculation. Cu-Fe-MOF was acted as electron shuttle between molecules of phenol and PMS, and the cooperation effect of Fe and Cu on the Cu-Fe-MOF promoted the electron transfer, achieving the high degradation efficiency of phenol. Thus, Cu-Fe-MOF is an ideal catalyst for activating PMS, which is conducive to promote the applying of catalyst-activated PMS processes for practical wastewater treatments.
    [Abstract] [Full Text] [Related] [New Search]