These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3-(Methylthio)Propionic Acid from Bacillus thuringiensis Berliner Exhibits High Nematicidal Activity against the Root Knot Nematode Meloidogyne incognita (Kofoid and White) Chitwood.
    Author: Chen L, Wang Y, Zhu L, Min Y, Tian Y, Gong Y, Liu X.
    Journal: Int J Mol Sci; 2024 Jan 30; 25(3):. PubMed ID: 38338986.
    Abstract:
    Root knot nematodes cause serious damage to global agricultural production annually. Given that traditional chemical fumigant nematicides are harmful to non-target organisms and the environment, the development of biocontrol strategies has attracted significant attention in recent years. In this study, it was found that the Bacillus thuringiensis Berliner strain NBIN-863 exhibits strong fumigant nematicidal activity and has a high attraction effect on Meloidogyne incognita (Kofoid and White) Chitwood. Four volatile organic compounds (VOCs) produced by NBIN-863 were identified using solid-phase microextraction and gas chromatography-mass spectrometry. The nematicidal activity of four VOCs, namely, N-methylformamide, propenamide, 3-(methylthio)propionic acid, and phenylmalonic acid, was detected. Among these compounds, 3-(methylthio)propionic acid exhibited the highest direct contact nematicidal activity against M. incognita, with an LC50 value of 6.27 μg/mL at 24 h. In the fumigant bioassay, the mortality rate of M. incognita treated with 1 mg/mL of 3-(methylthio)propionic acid for 24 h increased to 69.93%. Furthermore, 3-(methylthio)propionic acid also exhibited an inhibitory effect on the egg-hatching of M. incognita. Using chemotaxis assays, it was determined that 3-(methylthio)propionic acid was highly attractive to M. incognita. In pot experiments, the application of 3-(methylthio)propionic acid resulted in a reduction in gall numbers, decreasing the number of galls per gram of tomato root from 97.58 to 6.97. Additionally, the root length and plant height of the treated plants showed significant increases in comparison with the control group. The current study suggests that 3-(methylthio)propionic acid is a novel nematicidal virulence factor of B. thuringiensis. Our research provides evidence for the potential use of NBIN-863 or its VOCs in biocontrol against root knot nematodes.
    [Abstract] [Full Text] [Related] [New Search]