These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: On the performance of HRPA(D) for NMR spin-spin coupling constants: Smaller molecules, aromatic and fluoroaromatic compounds. Author: Jessen LM, Sauer SPA. Journal: J Chem Phys; 2024 Feb 14; 160(6):. PubMed ID: 38341775. Abstract: In this study, the performance of the doubles-corrected higher random-phase approximation [HRPA(D)] has been investigated in calculations of nuclear magnetic resonance spin-spin coupling constants (SSCCs) for 58 molecules with the experimental values used as the reference values. HRPA(D) is an approximation to the second-order polarization propagator approximation (SOPPA) and is, therefore, computationally less expensive than SOPPA. HRPA(D) performs comparable and sometimes even better than SOPPA, and therefore, when calculating SSCCs, it should be considered as an alternative to SOPPA. Furthermore, it was investigated whether a coupled-cluster singles, doubles and perturbative triples [CCSD(T)] or Møller-Plesset second order (MP2) geometry optimization was optimal for a SOPPA and a HRPA(D) SSCC calculation for eight smaller molecules. CCSD(T) is the optimal geometry optimization for the SOPPA calculation, and MP2 was optimal for HRPA(D) SSCC calculations.[Abstract] [Full Text] [Related] [New Search]