These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Placental energy metabolism: Evidence for a placental-maternal lactate-ketone trade in the human.
    Author: Henriksen T, Sajjad MU, Haugen G, Michelsen TM.
    Journal: Placenta; 2024 Mar 25; 148():31-37. PubMed ID: 38350223.
    Abstract:
    INTRODUCTION: Glucose from placenta is the predominant energy source for the fetus. Individual placentas exhibit a range of glucose handling from apparent net production to high consumption, presumably reflecting an ability of placenta to secure both own and fetal energy needs. A dependency of placenta on glucose as the main energy source could impede fetal supply. Placenta seems to release lactate to maternal side implying loss of energy. Whether placenta takes up ketones is unclear. Our main hypothesis was that the human placenta can release lactate to the maternal side but take up maternal ketones. METHODS: An in vivo study of term uncomplicated pregnancies including 56 women delivered by cesarean section. We measured uterine and umbilical blood flow by Doppler ultrasonography, combined with blood sampling from maternal radial artery, uterine vein, umbilical artery and vein. Lactate and ketones were determined by quantitative nuclear magnetic resonance. RESULTS: Placenta released lactate to the maternal side (median -36.65 μmol/min. Q1, Q3: 78.53, 13.29), p < 0.001), but not to the fetal side. A net uptake of maternal ketones was found (median (Q1, Q3): 59.12 (30.64, 131.46) μmol acetate equivalents/min, p < 0.001) which largely was metabolized by the uteroplacenta. The uptake of ketones was comparable in energy to the loss of lactate. DISCUSSION: Placenta may release lactate to the maternal side. The energy lost by lactate may be compensated by uptake of maternal ketones. This lactate-ketone trade could benefit both placenta and the fetus by providing lactate for maternal gluconeogenesis and ketones for uteroplacental oxidative energy production.
    [Abstract] [Full Text] [Related] [New Search]