These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel solid self-emulsifying drug delivery system to enhance oral bioavailability of cabazitaxel.
    Author: Sun X, Lv G, Xiong J, Zhao J, Zhao J, Wang Z, Wang Y, Yin T, Gou J, He H, Tang X, Zhang Y.
    Journal: Int J Pharm; 2024 Apr 10; 654():123899. PubMed ID: 38365068.
    Abstract:
    In this study, a novel cabazitaxel solid self-emulsifying drug delivery system (CTX S-SEDDS) was developed by solvent evaporation and liquid-solid compression technology, which overcame the limitations of the traditional SEDDS and improved the oral bioavailability. From the results of solubility, pseudo-ternary phase diagram, and single-factor analysis, Tween 80 (surfactant), Tricaprylin (oil), and Glyceryl monooleate (oil) with the ratio of 30:55:15 showed optimized particle size (140.87 nm), short emulsification and high cabazitaxel (CTX) loading capacity (50 mg·g-1). Based on the liquid-solid compression mathematical model, Syloid XDP3050 was determined as carrier material and Syloid 244FP as coating material. The prepared CTX S-SEDDS showed excellent flowability, tabletability, and reconstitution property. In vivo pharmacokinetics in rats demonstrated the absolute bioavailability of CTX S-SEDDS (17.27 %) was significantly enhanced compared with CTX solution (1.69 %), which was close to that of CTX-SEDSS (20.48 %). Lymphatic absorption was verified by in vitro imaging to be an important absorption route for self-emulsifying preparations. These results suggested that CTX S-SEDDS could enhance oral bioavailability of poorly water-soluble drug cabazitaxel while avoiding SEDDS limitations and harnessing the dual advantages of solid and liquid preparations.
    [Abstract] [Full Text] [Related] [New Search]