These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human U1 small nuclear RNA genes: extensive conservation of flanking sequences suggests cycles of gene amplification and transposition.
    Author: Bernstein LB, Manser T, Weiner AM.
    Journal: Mol Cell Biol; 1985 Sep; 5(9):2159-71. PubMed ID: 3837185.
    Abstract:
    The DNA immediately flanking the 164-base-pair U1 RNA coding region is highly conserved among the approximately 30 human U1 genes. The U1 multigene family also contains many U1 pseudogenes (designated class I) with striking although imperfect flanking homology to the true U1 genes. Using cosmid vectors, we now have cloned, characterized, and partially sequenced three 35-kilobase (kb) regions of the human genome spanning U1 homologies. Two clones contain one true U1 gene each, and the third bears two class I pseudogenes 9 kb apart in the opposite orientation. We show by genomic blotting and by direct DNA sequence determination that the conserved sequences surrounding U1 genes are much more extensive than previously estimated: nearly perfect sequence homology between many true U1 genes extends for at least 24 kb upstream and at least 20 kb downstream from the U1 coding region. In addition, the sequences of the two new pseudogenes provide evidence that class I U1 pseudogenes are more closely related to each other than to true genes. Finally, it is demonstrated elsewhere (Lindgren et al., Mol. Cell. Biol. 5:2190-2196, 1985) that both true U1 genes and class I U1 pseudogenes map to chromosome 1, but in separate clusters located far apart on opposite sides of the centromere. Taken together, these results suggest a model for the evolution of the U1 multigene family. We speculate that the contemporary family of true U1 genes was derived from a more ancient family of U1 genes (now class I U1 pseudogenes) by gene amplification and transposition. Gene amplification provides the simplest explanation for the clustering of both U1 genes and class I pseudogenes and for the conservation of at least 44 kb of DNA flanking the U1 coding region in a large fraction of the 30 true U1 genes.
    [Abstract] [Full Text] [Related] [New Search]