These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role for Caspase-8 in the Release of IL-1β and Active Caspase-1 from Viable Human Monocytes during Toxoplasma gondii Infection. Author: Pandori WJ, Matsuno SY, Shin JH, Kim SC, Kao TH, Mallya S, Batarseh SN, Lodoen MB. Journal: J Immunol; 2024 Apr 01; 212(7):1161-1171. PubMed ID: 38372637. Abstract: Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1β. We previously showed that IL-1β release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1β release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells. Genetic ablation of caspase-1 or -8, but not caspase-4 or -5, decreased IL-1β release during T. gondii infection without affecting cell death. In contrast, TNF-α and IL-6 secretion were unperturbed in caspase-8 KO cells during T. gondii infection. Dual pharmacological inhibition of caspase-8 and RIPK1 in primary monocytes also decreased IL-1β release without affecting cell viability or parasite infection. Caspase-8 was also required for the release of active caspase-1 from T. gondii-infected cells and for IL-1β release during infection with the related apicomplexan parasite Neospora caninum. Surprisingly, caspase-8 deficiency did not impair synthesis or cleavage of pro-IL-1β, but resulted in the retention of mature IL-1β within cells. Generation of gasdermin E KO and ATG7 KO THP-1 cells revealed that the release of IL-1β was not dependent on gasdermin E or ATG7. Collectively, our data indicate that during T. gondii Infection of human monocytes, caspase-8 functions in a novel gasdermin-independent mechanism controlling IL-1β release from viable cells. This study expands on the molecular pathways that promote IL-1β in human immune cells and provides evidence of a role for caspase-8 in the mechanism of IL-1β release during infection.[Abstract] [Full Text] [Related] [New Search]