These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Zero-Strain Sodium Lanthanum Titanate Perovskite Embedded in Flexible Carbon Fibers as a Long-Span Anode for Lithium-Ion Batteries. Author: Cao K, Zhu Y, He H, Xiao J, Ren N, Si J, Chen C. Journal: ACS Appl Mater Interfaces; 2024 Mar 06; 16(9):11421-11430. PubMed ID: 38387026. Abstract: "High-capacity" graphite and "zero-strain" spinel Li4Ti5O12 (LTO) occupy the majority market of anode materials for Li+ storage in commercial applications. Nevertheless, their intrinsic drawbacks including the unsafe potential of graphite and unsatisfactory capacity of LTO limit the further development of lithium-ion batteries (LIBs), which is unable to satisfy the ever-increasing demands. Here, a novel Na0.35La0.55TiO3 perovskite embedded in multichannel carbon fibers (NLTO-NF) is rationally designed and synthesized through an electrospinning method. It not only has the advantages of a respectable specific capacity of 265 mAh g-1 at 0.1 A g-1 and superb rate capability, but it also possesses the zero-strain characteristic. Impressively, an ultralong cycling life with 96.3% capacity retention after 9000 cycles at 2 A g-1 is achieved in the half cell, and 90.3% of capacity retention ratio is obtained after even 2500 cycles at 1 A g-1 in the coupled LiFePO4/NLTO-NF full cell. This study introduces a new member with excellent performance to the zero-strain materials family for next-generation LIBs.[Abstract] [Full Text] [Related] [New Search]