These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aggregation-induced emission activity of sensor TBM-C1 hybrid of methoxy-triphenylamine (OMe-TPA) and dicyanovinyl for cyanide detection in aqueous THF: Mechanistic insights and potential applications.
    Author: Xie T, Li Y, Zhang M, Wang L, Hu Y, Yin K, Fan S, Wu H.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2024 May 05; 312():124058. PubMed ID: 38387411.
    Abstract:
    A series fluorescent probes (TBM-Cx (x = 1, 4, 8)) were designed based on embedding various alkoxy chains on the electron donor of triphenylamine (TPA)-based dicyanovinyl (MT) compound with an electron-deficient benzothiadiazole (BTD) for sensitive, selective, and visualizing detection of cyanide in aqueous solution. Due to the nucleophilic addition of CN-, the intramolecular charge transfer (ICT) of these probes was inhibited by the destroyed conjugated structure, exhibiting excellent "turn-on" fluorescence response toward cyanide anion (CN-) in tetrahydrofuran (THF). However, the alkoxy chains with different lengths embedded in TPA not only enhance the sensitivity and solubility, but also regulate the emission behavior from ICT to aggregation-induced emission (AIE) characteristics. The binding mechanism and AIE sensing performances between the probes and CN- have been investigated and compared in THF/water mixture by spectral tools and theoretical calculations. The results showed that the ICT-based TBM-C1 probe with methoxy chain showed significantly turn-on fluorescence response to CN- as low as 0.077 μM in THF/water solution at high water fraction (90 %). Due to the AIE sensing process, TBM-C1 was successfully employed to determine CN- in food and water samples, image CN- in living cells and BALB/c mice, and prepare test kits for visualizing cyanide.
    [Abstract] [Full Text] [Related] [New Search]