These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wearable Sensor Based on a Tough Conductive Gel for Real-Time and Remote Human Motion Monitoring. Author: Yang Y, Yao C, Huang WY, Liu CL, Zhang Y. Journal: ACS Appl Mater Interfaces; 2024 Mar 06; 16(9):11957-11972. PubMed ID: 38393750. Abstract: The usage of a conductive hydrogel in wearable sensors has been thoroughly researched recently. Nonetheless, hydrogel-based sensors cannot simultaneously have excellent mechanical property, high sensitivity, comfortable wearability, and rapid self-healing performance, which result in poor durability and reusability. Herein, a robust conductive hydrogel derived from one-pot polymerization and subsequent solvent replacement is developed as a wearable sensor. Owing to the reversible hydrogen bonds cross-linked between polymer chains and clay nanosheets, the resulting conductive hydrogel-based sensor exhibits outstanding flexibility, self-repairing, and fatigue resistance performances. The embedding of graphene oxide nanosheets offers an enhanced hydrogel network and easy release of wearable sensor from the target position through remote irradiation, while Li+ ions incorporated by solvent replacement endow the wearable sensor with low detection limit (sensing strain: 1%), high conductivity (4.3 S m-1) and sensitivity (gauge factor: 3.04), good freezing resistance, and water retention. Therefore, the fabricated wearable sensor is suitable to monitor small and large human motions on the site and remotely under subzero (-54 °C) or room temperature, indicating lots of promising applications in human-motion monitoring, information encryption and identification, and electronic skins.[Abstract] [Full Text] [Related] [New Search]