These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature Evolution of Magnon Propagation Length in Tm3Fe5O12 Thin Films: Roles of Magnetic Anisotropy and Gilbert Damping. Author: Chanda A, Holzmann C, Schulz N, Ullrich A, DeTellem D, Albrecht M, Gross M, Ross CA, Arena DA, Phan MH, Srikanth H. Journal: ACS Nano; 2024 Mar 05; 18(9):7223-7240. PubMed ID: 38394644. Abstract: The magnon propagation length, ⟨ξ⟩, of a ferro-/ferrimagnet (FM) is one of the key factors that controls the generation and propagation of thermally driven magnonic spin current in FM/heavy metal (HM) bilayer based spincaloritronic devices. For the development of a complete physical picture of thermally driven magnon transport in FM/HM bilayers over a wide temperature range, it is of utmost importance to understand the respective roles of temperature-dependent Gilbert damping (α) and effective magnetic anisotropy (Keff) in controlling the temperature evolution of ⟨ξ⟩. Here, we report a comprehensive investigation of the temperature-dependent longitudinal spin Seebeck effect (LSSE), radio frequency transverse susceptibility, and broad-band ferromagnetic resonance measurements on Tm3Fe5O12 (TmIG)/Pt bilayers grown on different substrates. We observe a significant drop in the LSSE voltage below 200 K independent of TmIG film thickness and substrate choice. This is attributed to the noticeable increases in effective magnetic anisotropy field, HKeff (∝Keff) and α that occur within the same temperature range. From the TmIG thickness dependence of the LSSE voltage, we determined the temperature dependence of ⟨ξ⟩ and highlighted its correlation with the temperature-dependent HKeff and α in TmIG/Pt bilayers, which will be beneficial for the development of rare-earth iron garnet based efficient spincaloritronic nanodevices.[Abstract] [Full Text] [Related] [New Search]